The Acute and Early Effects of Whole-Brain Irradiation on Glial Activation, Brain Metabolism, and Behavior: a Positron Emission Tomography Study

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
47 Downloads (Pure)

Abstract

Purpose: Radiotherapy is a frequently applied treatment modality for brain tumors. Concomitant irradiation of normal brain tissue can induce various physiological responses. The aim of this study was to investigate whether acute and early-delayed effects of brain irradiation on glial activation and brain metabolism can be detected with positron emission tomography (PET) and whether these effects are correlated with behavioral changes. Procedures: Rats underwent 0-, 10-, or 25-Gy whole-brain irradiation. At 3 and 31 days post irradiation, 1-(2-chlorophenyl)-N-[11C]methyl-(1-methylpropyl)-3-isoquinoline carboxamide ([11C]PK11195) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) PET scans were acquired to detect changes in glial activation (neuroinflammation) and glucose metabolism, respectively. The open-field test (OFT) was performed on days 6 and 27 to assess behavioral changes. Results: Twenty-five-gray-irradiated rats showed higher [11C]PK11195 uptake in most brain regions than controls on day 3 (striatum, hypothalamus, accumbens, septum p < 0.05), although some brain regions had lower uptake (cerebellum, parietal association/retrosplenial visual cortex, frontal association/motor cortex, somatosensory cortex, p < 0.05). On day 31, several brain regions in 25-Gy-irradiated rats still showed significantly higher [11C]PK11195 uptake than controls and 10-Gy-irradiated group (p < 0.05). Within-group analysis showed that [11C]PK11195 uptake in individual brain regions of 25-Gy treated rats remained stable or slightly increased between days 3 and 31. In contrast, a significant reduction (p < 0.05) in tracer uptake between days 3 and 31 was found in all brain areas of controls and 10-Gy-irradiated animals. Moreover, 10-Gy treatment led to a significantly higher [18F]FDG uptake on day 3 (p < 0.05). [18F]FDG uptake decreased between days 3 and 31 in all groups; no significant differences between groups were observed anymore on day 31, except for increased uptake in the hypothalamus in the 10-Gy group. The OFT did not show any significant differences between groups. Conclusions: Non-invasive PET imaging indicated that brain irradiation induces neuroinflammation and a metabolic flare, without causing acute or early-delayed behavioral changes.

Original languageEnglish
Pages (from-to)1012-1020
Number of pages9
JournalMolecular Imaging and Biology
Issue number4
Early online dateFeb-2020
DOIs
Publication statusPublished - 12-Feb-2020

Keywords

  • Brain irradiation
  • Neuroinflammation
  • Microglia activation
  • Brain metabolism
  • Brain imaging
  • Behavior
  • PET imaging
  • CEREBRAL GLUCOSE-METABOLISM
  • LONG-TERM SURVIVORS
  • COGNITIVE IMPAIRMENT
  • CRANIAL IRRADIATION
  • RAT MODEL
  • IN-VIVO
  • RADIATION
  • NEUROINFLAMMATION
  • MICROGLIA
  • TRANSPLANTATION

Cite this