The evolution of inter-genomic variation in arbuscular mycorrhizal fungi

Research output: ThesisThesis fully internal (DIV)


Background: Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi whose hyphal networks form symbioses with plants. Previous studies have revealed extremely high levels of genetic variation for some loci, which has lead to the proposition that AMF contain thousands of genetically divergent nuclei that share the same cytoplasm, i.e. they are heterokaryotic coenocytes. No reproductive stage has as yet been observed in AMF, yet evidence is accumulating that the observed high levels of diversity could be maintained by the exchange of nuclei between hyphal systems and (meiotic) recombination. AMF spores contain varying fractions of this heterogeneous population of nuclei, which migrate directly from the parent mycelium. To our knowledge, AMF are the only organisms that never pass through a single nucleus stage in their life cycle, which allows nuclei to diverge into genetically distinct nuclei within the same cytoplasm. Thus, estimating genetic diversity in arbuscular mycorrhizal fungi (AMF) is a major challenge, not only for ecologists in the field but also for molecular biologists in the lab. It is unclear what the extent of polymorphism is in AMF genomes. The present thesis investigates different aspects of this peculiar genome organization.

Results The second chapter in this thesis confirms the extensive intra-isolate polymorphism that was previously observed for large subunit rDNA (in G. irregulare DAOM-197198) and the polymerase1-like gene, PLS (in G. etunicatum), and shows that this polymorphism is transcribed. In the third chapter I report the presence of a bottleneck of genetic variation at sporulation for the PLS locus, in G. etunicatum. Analyses in the fourth chapter, based on a conservative network-based clustering approach and five novel single copy genomic markers, reveal extensive genome-wide patterns of diversity in two different AMF species (G. irregulare and G. diaphanum). Conclusions The results from this thesis provide additional evidence in favor of genome differentiation between nuclei in the same isolate for AMF. Thus, at least three members of the Glomus genus, G. irregulare, G. diaphanum and G. etunicatum appear to be organisms whose genome organization cannot be described by a single genome sequence: genetically differentiated nuclei in AMF form a pangenome.
Original languageEnglish
QualificationMaster of Philosophy
Awarding Institution
  • Université de Montréal, Montreal, Quebec, Canada.
  • Hijri, Mohamed, Supervisor, External person
Award date11-Oct-2012
Publication statusPublished - 2012

Cite this