The growth of longitudinal social network analysis: A review of the key data sets and topics in research on child and adolescent development

René Veenstra, Teresa Bertogna, and, Lydia Laninga-Wijnen

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

235 Downloads (Pure)

Abstract

The field of social network studies has expanded in recent decades. This chapter describes the design, time window, and network questions of the 15 most used social network data sets. These central data sets predominantly stem from American and European samples. Avenues for further social network research are discussed as well. Longitudinal social network analysis has the advantage of allowing examination of the different types of influence and complexity of social networks. It is suitable for estimating complex forms of influence that are difficult to estimate using conventional regression, such as different types of influence (e.g., convergence vs. contagion or initiation vs. continuation); cross-behavior processes; bundles of behaviors; and various susceptibility models. It may also incorporate the impact of social norms, multiple similarity, other actors (e.g., parents), and multiplex networks. The ongoing refinement of social network methods, their application, and critical evaluation will undoubtedly give a boost to numerous innovative studies on topics that matter for the new generation of adolescents.
Original languageEnglish
Title of host publicationTeen Friendship Networks, Development, and Risky Behaviors
EditorsMark E. Feinberg, D. Wayne Osgood
PublisherOxford University Press
Chapter14
Pages326-352
Number of pages27
ISBN (Electronic)9780197602348
ISBN (Print)9780197602317
DOIs
Publication statusPublished - 5-Nov-2023

Fingerprint

Dive into the research topics of 'The growth of longitudinal social network analysis: A review of the key data sets and topics in research on child and adolescent development'. Together they form a unique fingerprint.

Cite this