The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids

Jingyuan Fu*, Marc Jan Bonder, Maria Carmen Cenit, Ettje Tigchelaar-Feenstra, Astrid Maatman, Jackie A. M. Dekens, Eelke Brandsma, Joanna Marczynska, Floris Imhann, Rinse K. Weersma, Lude Franke, Tiffany W. Poon, Ramnik J. Xavier, Dirk Gevers, Marten H. Hofker, Cisca Wijmenga, Alexandra Zhernakova

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

471 Citations (Scopus)
99 Downloads (Pure)

Abstract

Rationale: Evidence suggests that the gut microbiome is involved in the development of cardiovascular disease, with the host-microbe interaction regulating immune and metabolic pathways. However, there was no firm evidence for associations between microbiota and metabolic risk factors for cardiovascular disease from large-scale studies in humans. In particular, there was no strong evidence for association between cardiovascular disease and aberrant blood lipid levels.

Objectives: To identify intestinal bacteria taxa, whose proportions correlate with body mass index and lipid levels, and to determine whether lipid variance can be explained by microbiota relative to age, sex, and host genetics.

Methods and Results: We studied 893 subjects from the LifeLines-DEEP population cohort. After correcting for age and sex, we identified 34 bacterial taxa associated with body mass index and blood lipids; most are novel associations. Cross-validation analysis revealed that microbiota explain 4.5% of the variance in body mass index, 6% in triglycerides, and 4% in high-density lipoproteins, independent of age, sex, and genetic risk factors. A novel risk model, including the gut microbiome explained 25.9% of high-density lipoprotein variance, significantly outperforming the risk model without microbiome. Strikingly, the microbiome had little effect on low-density lipoproteins or total cholesterol.

Conclusions: Our studies suggest that the gut microbiome may play an important role in the variation in body mass index and blood lipid levels, independent of age, sex, and host genetics. Our findings support the potential of therapies altering the gut microbiome to control body mass, triglycerides, and high-density lipoproteins.

Original languageEnglish
Pages (from-to)817-824
Number of pages8
JournalCirculation research
Volume117
Issue number9
DOIs
Publication statusPublished - 9-Oct-2015

Keywords

  • body mass index
  • cardiovascular diseases
  • lipids
  • lipoproteins
  • HDL
  • metabolism
  • TAXONOMY ANALYSIS
  • METABOLISM
  • OBESITY
  • METAGENOME
  • ATHEROSCLEROSIS
  • ASSOCIATIONS
  • DIVERSITY
  • DATABASES
  • GENETICS
  • DISEASE

Cite this