The gut microbiota as an early predictor of COVID-19 severity

Marco Fabbrini, Federica D'Amico, Bernardina T F van der Gun, Monica Barone, Gabriele Conti, Sara Roggiani, Karin I Wold, María F Vincenti-Gonzalez, Gerolf C de Boer, Alida C M Veloo, Margriet van der Meer, Elda Righi, Elisa Gentilotti, Anna Górska, Fulvia Mazzaferri, Lorenza Lambertenghi, Massimo Mirandola, Maria Mongardi, Evelina Tacconelli, Silvia Turroni*Patrizia Brigidi, Adriana Tami

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

10 Downloads (Pure)

Abstract

Several studies reported alterations of the human gut microbiota (GM) during COVID-19. To evaluate the potential role of the GM as an early predictor of COVID-19 at disease onset, we analyzed gut microbial samples of 315 COVID-19 patients that differed in disease severity. We observed significant variations in microbial diversity and composition associated with increasing disease severity, as the reduction of short-chain fatty acid producers such as Faecalibacterium and Ruminococcus, and the growth of pathobionts as Anaerococcus and Campylobacter. Notably, we developed a multi-class machine-learning classifier, specifically a convolutional neural network, which achieved an 81.5% accuracy rate in predicting COVID-19 severity based on GM composition at disease onset. This achievement highlights its potential as a valuable early biomarker during the first week of infection. These findings offer promising insights into the intricate relationship between GM and COVID-19, providing a potential tool for optimizing patient triage and streamlining healthcare during the pandemic.IMPORTANCEEfficient patient triage for COVID-19 is vital to manage healthcare resources effectively. This study underscores the potential of gut microbiota (GM) composition as an early biomarker for COVID-19 severity. By analyzing GM samples from 315 patients, significant correlations between microbial diversity and disease severity were observed. Notably, a convolutional neural network classifier was developed, achieving an 81.5% accuracy in predicting disease severity based on GM composition at disease onset. These findings suggest that GM profiling could enhance early triage processes, offering a novel approach to optimizing patient management during the pandemic.

Original languageEnglish
Article numbere0018124
Number of pages21
JournalmSphere
Volume9
Issue number10
DOIs
Publication statusPublished - 29-Oct-2024

Keywords

  • Humans
  • COVID-19/microbiology
  • Gastrointestinal Microbiome
  • Severity of Illness Index
  • SARS-CoV-2
  • Female
  • Male
  • Machine Learning
  • Middle Aged
  • Adult
  • Feces/microbiology
  • Biomarkers
  • Aged
  • Bacteria/classification

Fingerprint

Dive into the research topics of 'The gut microbiota as an early predictor of COVID-19 severity'. Together they form a unique fingerprint.

Cite this