The interacting effect of prolonged darkness and temperature on photophysiological characteristics of three Antarctic phytoplankton species

Willem van de Poll*, Thalia Abi Nassif

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    31 Downloads (Pure)

    Abstract

    Photophysiological characteristics of the Southern Ocean phytoplankton species Phaeocystis antarctica, Geminigera cryophila, and Chaetoceros simplex were assessed during 7 weeks of darkness and subsequent recovery after darkness at 4 and 7°C. Chlorophyll a fluorescence and maximum quantum efficiency of PSII decreased during long darkness in a species-specific manner, whereas chlorophyll a concentration remained mostly unchanged. Phaeocystis antarctica showed the strongest decline in photosynthetic fitness during darkness, which coincided with a reduced capacity to recover after darkness, suggesting a loss of functional photosystem II (PSII) reaction centers. The diatom C. simplex at 4°C showed the strongest capacity to resume photosynthesis and active growth during 7 weeks of darkness. In all species, the maintenance of photosynthetic fitness during darkness was clearly temperature dependent as shown by the stronger decline of photosynthetic fitness at 7°C compared to 4°C. Although we lack direct evidence for this, we suggest that temperature-enhanced respiration rates cause stronger depletion of energy reserves that subsequently interferes with the maintenance of photosynthetic fitness during long darkness. Therefore, the current low temperatures in the coastal Southern Ocean may aid the maintenance of photosynthetic fitness during the austral winter. Further experiments should examine to what extent the species-specific differences in dark survival are relevant for future temperature scenarios for the coastal Southern Ocean.
    Original languageEnglish
    Pages (from-to)1053-1063
    Number of pages11
    JournalJournal of Phycology
    Volume59
    Issue number5
    Early online date17-Aug-2023
    DOIs
    Publication statusPublished - Oct-2023

    Cite this