Abstract
The classical Kalman-Yakubovich-Popov lemma provides a link between dissipativity of a system in state-space form and the solution to a linear matrix inequality. In this paper we derive the KYP lemma for linear systems described by higher-order differential equations. The result is an LMI in terms of the original coefficients in which the dissipativity problem is posed. Subsequently we study the connection between dissipativity and spectral factorization of polynomial matrices. This enables us to derive a new algorithm for polynomial spectral factorization in terms of an LMI in the coefficients of the polynomial matrix.
Original language | English |
---|---|
Title of host publication | EPRINTS-BOOK-TITLE |
Publisher | University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science |
Number of pages | 6 |
ISBN (Print) | 0780341872 |
Publication status | Published - 1997 |
Keywords
- polynomial spectral factorization
- linear matrix inequalities
- two-variable polynomial matrices
- dissipative systems theory