TY - JOUR
T1 - The MINOS complex
T2 - Keeper of mitochondrial membrane architecture
AU - Zerbes, Ralf M.
AU - Bohnert, Maria
AU - Malsburg, Karina von der
AU - Warscheid, Bettina
AU - Klei, Ida J. van der
AU - Pfanner, Nikolaus
AU - Laan, Martin van der
N1 - Relation: http://www.rug.nl/fmns-research/gbb/index
Rights: University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)
PY - 2012
Y1 - 2012
N2 - Mitochondria are surrounded by two distinct membranes. While the outer membrane confines the organelle, the inner membrane has a key role in cellular energy metabolism. The inner mitochondrial membrane is subdivided into the inner boundary membrane, which is closely opposed to the outer membrane, and large irregular invagi- nations termed cristae. Narrow tubular openings – the crista junctions – connect cristae membrane and inner boundary membrane domains. Additionally, sites of contact between inner boundary and outer mitochondrial membranes are frequently observed. We have recently discovered a mitochondrial inner membrane organizing system (MINOS complex) that is crucial for both, the formation of crista junctions and membrane contact sites. MINOS is composed of six inner membrane proteins: the two highly conserved core subunits Fcj1/mitofilin and Mio10/MINOS1 together with Aim5, Aim13, Aim37 and Mio27. Deletion of FCJ1 or MIO10 in yeast abolishes MINOS formation and leads to a grossly altered mitochondrial ultrastructure with extended stacks of sheet-like cristae membranes and the loss of crista junctions. Moreover, MINOS interacts with several protein complexes of the outer mitochondrial membrane, like the SAM/TOB complex or the TOM complex at membrane contact sites. Formation of MINOS con- tact sites supports the import of precursor proteins from the cytosol into the intermembrane space and outer membrane. A detailed structure/function analysis of Fcj1/mitofilin revealed that membrane tethering, MINOS integrity and formation of crista junctions depend on different Fcj1/mitofilin protein domains.
AB - Mitochondria are surrounded by two distinct membranes. While the outer membrane confines the organelle, the inner membrane has a key role in cellular energy metabolism. The inner mitochondrial membrane is subdivided into the inner boundary membrane, which is closely opposed to the outer membrane, and large irregular invagi- nations termed cristae. Narrow tubular openings – the crista junctions – connect cristae membrane and inner boundary membrane domains. Additionally, sites of contact between inner boundary and outer mitochondrial membranes are frequently observed. We have recently discovered a mitochondrial inner membrane organizing system (MINOS complex) that is crucial for both, the formation of crista junctions and membrane contact sites. MINOS is composed of six inner membrane proteins: the two highly conserved core subunits Fcj1/mitofilin and Mio10/MINOS1 together with Aim5, Aim13, Aim37 and Mio27. Deletion of FCJ1 or MIO10 in yeast abolishes MINOS formation and leads to a grossly altered mitochondrial ultrastructure with extended stacks of sheet-like cristae membranes and the loss of crista junctions. Moreover, MINOS interacts with several protein complexes of the outer mitochondrial membrane, like the SAM/TOB complex or the TOM complex at membrane contact sites. Formation of MINOS con- tact sites supports the import of precursor proteins from the cytosol into the intermembrane space and outer membrane. A detailed structure/function analysis of Fcj1/mitofilin revealed that membrane tethering, MINOS integrity and formation of crista junctions depend on different Fcj1/mitofilin protein domains.
U2 - 10.1016/j.bbabio.2012.06.208
DO - 10.1016/j.bbabio.2012.06.208
M3 - Meeting Abstract
VL - 1817
SP - S74-S75
JO - Biochimica et Biophysica Acta
JF - Biochimica et Biophysica Acta
SN - 0005-2728
IS - 33
ER -