TY - JOUR
T1 - The paradox of fatty-acid β-oxidation in muscle insulin resistance
T2 - Metabolic control and muscle heterogeneity
AU - Vieira-Lara, Marcel A.
AU - Bakker, Barbara M.
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2024/6
Y1 - 2024/6
N2 - The skeletal muscle is a metabolically heterogeneous tissue that plays a key role in maintaining whole-body glucose homeostasis. It is well known that muscle insulin resistance (IR) precedes the development of type 2 diabetes. There is a consensus that the accumulation of specific lipid species in the tissue can drive IR. However, the role of the mitochondrial fatty-acid β-oxidation in IR and, consequently, in the control of glucose uptake remains paradoxical: interventions that either inhibit or activate fatty-acid β-oxidation have been shown to prevent IR. We here discuss the current theories and evidence for the interplay between β-oxidation and glucose uptake in IR. To address the underlying intricacies, we (1) dive into the control of glucose uptake fluxes into muscle tissues using the framework of Metabolic Control Analysis, and (2) disentangle concepts of flux and catalytic capacities taking into account skeletal muscle heterogeneity. Finally, we speculate about hitherto unexplored mechanisms that could bring contrasting evidence together. Elucidating how β-oxidation is connected to muscle IR and the underlying role of muscle heterogeneity enhances disease understanding and paves the way for new treatments for type 2 diabetes.
AB - The skeletal muscle is a metabolically heterogeneous tissue that plays a key role in maintaining whole-body glucose homeostasis. It is well known that muscle insulin resistance (IR) precedes the development of type 2 diabetes. There is a consensus that the accumulation of specific lipid species in the tissue can drive IR. However, the role of the mitochondrial fatty-acid β-oxidation in IR and, consequently, in the control of glucose uptake remains paradoxical: interventions that either inhibit or activate fatty-acid β-oxidation have been shown to prevent IR. We here discuss the current theories and evidence for the interplay between β-oxidation and glucose uptake in IR. To address the underlying intricacies, we (1) dive into the control of glucose uptake fluxes into muscle tissues using the framework of Metabolic Control Analysis, and (2) disentangle concepts of flux and catalytic capacities taking into account skeletal muscle heterogeneity. Finally, we speculate about hitherto unexplored mechanisms that could bring contrasting evidence together. Elucidating how β-oxidation is connected to muscle IR and the underlying role of muscle heterogeneity enhances disease understanding and paves the way for new treatments for type 2 diabetes.
KW - Diabetes
KW - Fatty-acid β-oxidation
KW - Glucose metabolism
KW - Insulin resistance
KW - Mitochondria
UR - http://www.scopus.com/inward/record.url?scp=85191321999&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2024.167172
DO - 10.1016/j.bbadis.2024.167172
M3 - Review article
C2 - 38631409
AN - SCOPUS:85191321999
SN - 0925-4439
VL - 1870
JO - Biochimica et Biophysica Acta - Molecular Basis of Disease
JF - Biochimica et Biophysica Acta - Molecular Basis of Disease
IS - 5
M1 - 167172
ER -