The (photo)chemistry of Stenhouse photoswitches: Guiding principles and system design

Michael M. Lerch, Wiktor Szymański*, Ben L. Feringa*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

234 Citations (Scopus)
1110 Downloads (Pure)

Abstract

Molecular photoswitches comprise chromophores that can be interconverted reversibly with light between two states with different photochemical and physicochemical properties. This feature renders them useful for diverse applications, ranging from materials science, biology (specifically photopharmacology) to supramolecular chemistry. With new and more challenging systems to control, especially extending towards biomedical applications, using visible or near-infrared light for photoswitch activation becomes vital. Donor-acceptor Stenhouse adducts are a novel class of visible light-responsive negative photochromes that provide a possible answer to current limitations of other photoswitch classes in the visible and NIR window. Their rapid development since their discovery in 2014, together with first successful examples of applications, demonstrate both their potential and areas where improvements are needed. A better understanding of DASA characteristics and its photoswitching mechanism has revealed that they are in fact a subset of a more general structural class of photochromes, namely Stenhouse photoswitches. This tutorial review aims at providing an introduction and practical guide on DASAs: it focuses on their structure and synthesis, provides fundamental insights for understanding their photoswitching behavior and demonstrates guiding principles for tailoring these switches for given applications.

Original languageEnglish
Pages (from-to)1910-1937
Number of pages28
JournalChemical Society Reviews
Volume47
Issue number6
DOIs
Publication statusPublished - 21-Mar-2018

Keywords

  • LIGHT RESPONSIVE POLYMER
  • VISIBLE-LIGHT
  • SHEDDING LIGHT
  • ADDUCTS
  • PHOTOPHARMACOLOGY
  • PHOTOCHROMISM
  • CHEMISTRY
  • TARGETS
  • SALTS
  • RED

Fingerprint

Dive into the research topics of 'The (photo)chemistry of Stenhouse photoswitches: Guiding principles and system design'. Together they form a unique fingerprint.

Cite this