TY - JOUR
T1 - The Pristine survey - XVII. The C-19 stream is dynamically hot and more extended than previously thought
AU - Yuan, Zhen
AU - Martin, Nicolas F.
AU - Ibata, Rodrigo A.
AU - Caffau, Elisabetta
AU - Bonifacio, Piercarlo
AU - Mashonkina, Lyudmila I.
AU - Errani, Raphaël
AU - Doliva-Dolinsky, Amandine
AU - Starkenburg, Else
AU - Venn, Kim A.
AU - Arentsen, Anke
AU - Aguado, David S.
AU - Bellazzini, Michele
AU - Famaey, Benoit
AU - Fouesneau, Morgan
AU - González Hernández, Jonay I.
AU - Jablonka, Pascale
AU - Lardo, Carmela
AU - Malhan, Khyati
AU - Navarro, Julio F.
AU - Sánchez Janssen, Rubén
AU - Sestito, Federico
AU - Thomas, Guillaume F.
AU - Viswanathan, Akshara
AU - Vitali, Sara
PY - 2022/8/1
Y1 - 2022/8/1
N2 - The C-19 stream is the most metal-poor stellar system ever discovered, with a mean metallicity [Fe/H] = -3.38 ± 0.06. Its low metallicity dispersion (σ[Fe/H] < 0.18 at the 95 per cent confidence level) and variations in sodium abundances strongly suggest a globular cluster origin. In this work, we use Very Large Telescope (VLT)/UV-Visual Echelle Spectrograph (UVES) spectra of seven C-19 stars to derive more precise velocity measurements for member stars, and to identify two new members with radial velocities and metallicities consistent with the stream's properties. One of these new member stars is located 30° away from the previously identified body of C-19, implying that the stream is significantly more extended than previously known and that more members likely await discovery. In the main part of C-19, we measure a radial velocity dispersion σv = 6.2$^{+2.0}_{-1.4}{\rm \, km\, s^{-1}}$ from nine members, and a stream width of 0.56° ± 0.08°, equivalent to ~158 pc at a heliocentric distance of 18 kpc. These confirm that C-19 is comparatively hotter, dynamically, than other known globular cluster streams and shares the properties of faint dwarf galaxy streams. On the other hand, the variations in the Na abundances of the three newly observed bright member stars, the variations in Mg and Al for two of them, and the normal Ba abundance of the one star where it can be measured provide further evidence for a globular cluster origin. The tension between the dynamical and chemical properties of C-19 suggests that its progenitor experienced a complex birth environment or disruption history.
AB - The C-19 stream is the most metal-poor stellar system ever discovered, with a mean metallicity [Fe/H] = -3.38 ± 0.06. Its low metallicity dispersion (σ[Fe/H] < 0.18 at the 95 per cent confidence level) and variations in sodium abundances strongly suggest a globular cluster origin. In this work, we use Very Large Telescope (VLT)/UV-Visual Echelle Spectrograph (UVES) spectra of seven C-19 stars to derive more precise velocity measurements for member stars, and to identify two new members with radial velocities and metallicities consistent with the stream's properties. One of these new member stars is located 30° away from the previously identified body of C-19, implying that the stream is significantly more extended than previously known and that more members likely await discovery. In the main part of C-19, we measure a radial velocity dispersion σv = 6.2$^{+2.0}_{-1.4}{\rm \, km\, s^{-1}}$ from nine members, and a stream width of 0.56° ± 0.08°, equivalent to ~158 pc at a heliocentric distance of 18 kpc. These confirm that C-19 is comparatively hotter, dynamically, than other known globular cluster streams and shares the properties of faint dwarf galaxy streams. On the other hand, the variations in the Na abundances of the three newly observed bright member stars, the variations in Mg and Al for two of them, and the normal Ba abundance of the one star where it can be measured provide further evidence for a globular cluster origin. The tension between the dynamical and chemical properties of C-19 suggests that its progenitor experienced a complex birth environment or disruption history.
KW - Galaxy: halo
KW - structure
KW - kinematics and dynamics
KW - abundances
KW - Astrophysics - Astrophysics of Galaxies
U2 - 10.1093/mnras/stac1399
DO - 10.1093/mnras/stac1399
M3 - Article
SN - 0035-8711
VL - 514
SP - 1664
EP - 1671
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
ER -