The zinc finger protein ZAT11 modulates paraquat-induced programmed cell death in Arabidopsis thaliana

Muhammad Kamran Qureshi*, Neerakkal Sujeeth, Tsanko S. Gechev, Jacques Hille

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    19 Citations (Scopus)
    509 Downloads (Pure)

    Abstract

    Plants use programmed cell death (PCD) as a tool in their growth and development. PCD is also involved in defense against different kinds of stresses including pathogen attack. In both types of PCD, reactive oxygen species (ROS) play an important role. ROS is not only a toxic by-product but also acts as signaling molecule that can trigger defense mechanisms in plant. Earlier transcriptome studies indicated the activation of ROS responsive and/or generating genes. Eight genes were selected with a potential role in ROS-induced PCD pathway and one of them, encoding the zinc finger protein ZAT11 (Zinc Arabidopsis thaliana11) exhibited an altered cell death phenotype. Two independent zat11 mutants in a loh2 (LAG one homologue2) genetic background showed enhanced tolerance to paraquat-induced oxidative stress and PCD; whereas, these double mutants exhibited cell death triggered by Alternaria alternata f. sp. lycopersici-toxin (AAL-toxin) or 3-aminotriazole (AT). This indicates that ZAT11 is involved in an intricate oxidative stress-induced PCD network, and the final outcome depends on ZAT11 interactions with other players specific for the particular types of oxidative stress.

    Original languageEnglish
    Pages (from-to)1863-1871
    Number of pages9
    JournalActa Physiologiae Plantarum
    Volume35
    Issue number6
    DOIs
    Publication statusPublished - Jun-2013

    Keywords

    • AAL-toxin
    • Arabidopsis
    • Paraquat
    • Programmed cell death
    • Reactive oxygen species
    • ZAT11
    • REACTIVE OXYGEN
    • OXIDATIVE STRESS
    • TRANSCRIPTION FACTOR
    • ENHANCED TOLERANCE
    • HYDROGEN-PEROXIDE
    • RESISTANT MUTANT
    • ABIOTIC STRESS
    • SENESCENCE
    • DEFENSE
    • PLANTS

    Cite this