Thermal stability of gas phase magnesium nanoparticles

Gopi Krishnan, Bart J. Kooi*, George Palasantzas, Yevheniy Pivak, Bernard Dam

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

36 Citations (Scopus)
419 Downloads (Pure)


In this work we present a unique transmission electron microscopy study of the thermal stability of gas phase synthesized Mg nanoparticles, which have attracted strong interest as high capacity hydrogen storage materials. Indeed, Mg nanoparticles with a MgO shell (similar to 3 nm thick) annealed at 300 C show evaporation, void formation, and void growth in the Mg core both in vacuum and under a high pressure gas environment. This is mainly due to the outward diffusion and evaporation of Mg with the simultaneously inward diffusion of vacancies leading to void growth (Kirkendall effect). The rate of Mg evaporation and void formation depends on the annealing conditions. In vacuum, and at T=300 degrees C, the complete evaporation of the Mg core takes place (within a few hours) for sizes similar to 15-20 nm. Void formation and growth has been observed for particles with sizes similar to 20-50 nm, while stable Mg nanoparticles were observed for sizes >50 nm. Furthermore, even at relative low temperature annealing (as low as 60 degrees C), void formation and growth occurs in 15-20 nm sized Mg nanoparticles, indicating that voiding will be even more dominant for nanoparticles smaller than 10 nm. Our findings confirm that Mg evaporation and void formation in nanoparticles with sizes less than 50 nm present formidable barriers for their applicability in hydrogen storage, but also could inspire future research directions to overcome these obstacles.
Original languageEnglish
Article number053504
Pages (from-to)053504-1-053504-7
Number of pages7
JournalJournal of Applied Physics
Issue number5
Publication statusPublished - 1-Mar-2010



Cite this