Titratable Martini model for constant pH simulations

Fabian Grünewald, Paulo C T Souza, Haleh Abdizadeh, Jonathan Barnoud, Alex H de Vries, Siewert J Marrink*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

6 Citations (Scopus)

Abstract

In this work, we deliver a proof of concept for a fast method that introduces pH effects into classical coarse-grained (CG) molecular dynamics simulations. Our approach is based upon the latest version of the popular Martini CG model to which explicit proton mimicking particles are added. We verify our approach against experimental data involving several different molecules and different environmental conditions. In particular, we compute titration curves, pH dependent free energies of transfer, and lipid bilayer membrane affinities as a function of pH. Using oleic acid as an example compound, we further illustrate that our method can be used to study passive translocation in lipid bilayers via protonation. Finally, our model reproduces qualitatively the expansion of the macromolecule dendrimer poly(propylene imine) as well as the associated pKa shift of its different generations. This example demonstrates that our model is able to pick up collective interactions between titratable sites in large molecules comprising many titratable functional groups.

Original languageEnglish
Article number024118
Number of pages12
JournalThe Journal of Chemical Physics
Volume153
Issue number2
DOIs
Publication statusPublished - 14-Jul-2020

Keywords

  • MOLECULAR-DYNAMICS SIMULATIONS
  • GRAINED FORCE-FIELD
  • FATTY-ACIDS
  • PARTITION-COEFFICIENTS
  • EXPLICIT SOLVENT
  • PROTON TRANSPORT
  • FLIP-FLOP
  • WATER
  • AMINES

Cite this