TY - JOUR
T1 - Towards FAIRification of sensitive and fragmented rare disease patient data
T2 - challenges and solutions in European reference network registries
AU - dos Santos Vieira, Bruna
AU - Bernabé, César H.
AU - Zhang, Shuxin
AU - Abaza, Haitham
AU - Benis, Nirupama
AU - Cámara, Alberto
AU - Cornet, Ronald
AU - Le Cornec, Clémence M.A.
AU - ’t Hoen, Peter A.C.
AU - Schaefer, Franz
AU - van der Velde, K. Joeri
AU - Swertz, Morris A.
AU - Wilkinson, Mark D.
AU - Jacobsen, Annika
AU - Roos, Marco
N1 - Funding Information:
We would like to acknowledge the contributions from the ERNs, JRC, all FAIR data steward PIs, and the ex-stewards Mario Prieto, Céline Angin, and Arnaud Sandrin. We are thankful for the support of Annalisa Landi and Yanis Mimouni with the legal and ethical discussions. We also thank Marc Hanauer for the support regarding Orphanet and ORPHAcode.
Funding Information:
This work was supported by funding from the European Union’s Horizon 2020 research and innovation programme under the EJP RD COFUND-EJP N 825575. This work has also been supported by ERKNet, which is co-funded by the EU within the framework of the Third Health Programme “ERN-2016 - Framework Partnership Agreement 2017-2021.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12/14
Y1 - 2022/12/14
N2 - Introduction: Rare disease patient data are typically sensitive, present in multiple registries controlled by different custodians, and non-interoperable. Making these data Findable, Accessible, Interoperable, and Reusable (FAIR) for humans and machines at source enables federated discovery and analysis across data custodians. This facilitates accurate diagnosis, optimal clinical management, and personalised treatments. In Europe, twenty-four European Reference Networks (ERNs) work on rare disease registries in different clinical domains. The process and the implementation choices for making data FAIR (‘FAIRification’) differ among ERN registries. For example, registries use different software systems and are subject to different legal regulations. To support the ERNs in making informed decisions and to harmonise FAIRification, the FAIRification steward team was established to work as liaisons between ERNs and researchers from the European Joint Programme on Rare Diseases. Results: The FAIRification steward team inventoried the FAIRification challenges of the ERN registries and proposed solutions collectively with involved stakeholders to address them. Ninety-eight FAIRification challenges from 24 ERNs’ registries were collected and categorised into “training” (31), “community” (9), “modelling” (12), “implementation” (26), and “legal” (20). After curating and aggregating highly similar challenges, 41 unique FAIRification challenges remained. The two categories with the most challenges were “training” (15) and “implementation” (9), followed by “community” (7), and then “modelling” (5) and “legal” (5). To address all challenges, eleven types of solutions were proposed. Among them, the provision of guidelines and the organisation of training activities resolved the “training” challenges, which ranged from less-technical “coffee-rounds” to technical workshops, from informal FAIR Games to formal hackathons. Obtaining implementation support from technical experts was the solution type for tackling the “implementation” challenges. Conclusion: This work shows that a dedicated team of FAIR data stewards is an asset for harmonising the various processes of making data FAIR in a large organisation with multiple stakeholders. Additionally, multi-levelled training activities are required to accommodate the diverse needs of the ERNs. Finally, the lessons learned from the experience of the FAIRification steward team described in this paper may help to increase FAIR awareness and provide insights into FAIRification challenges and solutions of rare disease registries.
AB - Introduction: Rare disease patient data are typically sensitive, present in multiple registries controlled by different custodians, and non-interoperable. Making these data Findable, Accessible, Interoperable, and Reusable (FAIR) for humans and machines at source enables federated discovery and analysis across data custodians. This facilitates accurate diagnosis, optimal clinical management, and personalised treatments. In Europe, twenty-four European Reference Networks (ERNs) work on rare disease registries in different clinical domains. The process and the implementation choices for making data FAIR (‘FAIRification’) differ among ERN registries. For example, registries use different software systems and are subject to different legal regulations. To support the ERNs in making informed decisions and to harmonise FAIRification, the FAIRification steward team was established to work as liaisons between ERNs and researchers from the European Joint Programme on Rare Diseases. Results: The FAIRification steward team inventoried the FAIRification challenges of the ERN registries and proposed solutions collectively with involved stakeholders to address them. Ninety-eight FAIRification challenges from 24 ERNs’ registries were collected and categorised into “training” (31), “community” (9), “modelling” (12), “implementation” (26), and “legal” (20). After curating and aggregating highly similar challenges, 41 unique FAIRification challenges remained. The two categories with the most challenges were “training” (15) and “implementation” (9), followed by “community” (7), and then “modelling” (5) and “legal” (5). To address all challenges, eleven types of solutions were proposed. Among them, the provision of guidelines and the organisation of training activities resolved the “training” challenges, which ranged from less-technical “coffee-rounds” to technical workshops, from informal FAIR Games to formal hackathons. Obtaining implementation support from technical experts was the solution type for tackling the “implementation” challenges. Conclusion: This work shows that a dedicated team of FAIR data stewards is an asset for harmonising the various processes of making data FAIR in a large organisation with multiple stakeholders. Additionally, multi-levelled training activities are required to accommodate the diverse needs of the ERNs. Finally, the lessons learned from the experience of the FAIRification steward team described in this paper may help to increase FAIR awareness and provide insights into FAIRification challenges and solutions of rare disease registries.
KW - Data steward
KW - FAIR
KW - Patient registry
KW - Rare disease
KW - Stewardship
U2 - 10.1186/s13023-022-02558-5
DO - 10.1186/s13023-022-02558-5
M3 - Article
C2 - 36517834
AN - SCOPUS:85144204386
SN - 1750-1172
VL - 17
JO - Orphanet journal of rare diseases
JF - Orphanet journal of rare diseases
IS - 1
M1 - 436
ER -