Tracing the path from health to disease: forwards and backwards

Research output: Book/ReportInaugural speech

38 Downloads (Pure)

Abstract

Positron Emission Tomography (PET) is currently underutilised and can provide even more valuable information. PET is not merely an imaging device, but a measurement device. It measures molecules and their concentration inside a living subject. And as by definition life is not a static process, PET measures how molecules travel inside our bodies and provides a direct way to measure the kinetics of biochemical reactions.


There are more technological developments needed to enable dynamic imaging and kinetics in clinical practice for a range of radioactive molecules. Furthermore, quantification of biological processes using PET has several challenges related to imaging a living subject including the effects of ionising radiation. Can we minimise the radiation dose per scan which will then make it easier to justify scanning a person with multiple radioactive molecules?


For example, imaging multiple molecules simultaneously will allow to evaluate pixel-by-pixel the potential performance of drugs and swiftly decide how to proceed with treatments. In addition, it can help measuring the potential crosstalk of diseases such as cancer and cardiovascular diseases, or of different organs such as brain and heart, or gut and brain axes.


But more research is necessary to allow imaging two or more radioactive molecules simultaneously. Advancing PET technology can empower medicine by tracing several molecular pathways and interactions from human health to disease – forwards and backwards – and has a lot to offer for detecting and understanding disease processes and optimising precision medicine.
Original languageEnglish
Place of PublicationGroningen
PublisherUniversity of Groningen Press
Number of pages17
DOIs
Publication statusPublished - 2023

Publication series

NameInaugural Lectures
PublisherUniversity of Groningen Press

Cite this