Two Sides of the Same Coin: Emergence of Foldamers and Self-Replicators from Dynamic Combinatorial Libraries

Charalampos G Pappas*, Bin Liu, Ivana Marić, Jim Ottelé, Armin Kiani, Marcus L van der Klok, Patrick R Onck, Sijbren Otto*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
11 Downloads (Pure)

Abstract

The ability of molecules and systems to make copies of themselves and the ability of molecules to fold into stable, well-defined three-dimensional conformations are of considerable importance in the formation and persistence of life. The question of how, during the emergence of life, oligomerization reactions become selective and channel these reactions toward a small number of specific products remains largely unanswered. Herein, we demonstrate a fully synthetic chemical system where structurally complex foldamers and self-replicating assemblies emerge spontaneously and with high selectivity from pools of oligomers as a result of forming noncovalent interactions. Whether foldamers or replicators form depends on remarkably small differences in building block structures and composition and experimental conditions. We also observed the dynamic transformation of a foldamer into a replicator. These results show that the structural requirements/design criteria for building blocks that lead to foldamers are similar to those that lead to replicators. What determines whether folding or replication takes place is not necessarily the type of noncovalent interaction, but only whether they occur intra- or intermolecularly. This work brings together, for the first time, the fields of replicator and foldamer chemistry.

Original languageEnglish
Pages (from-to)7388–7393
Number of pages6
JournalJournal of the American Chemical Society
Volume143
Issue number19
Early online date6-May-2021
DOIs
Publication statusPublished - 19-May-2021

Keywords

  • AMPLIFICATION
  • CATALYSIS
  • EVOLUTION
  • DRIVEN
  • DESIGN

Cite this