Ultrafast Hole-Transfer Dynamics in Polymer/PCBM Bulk Heterojunctions

Artem A. Bakulin*, Jan C. Hummelen, Maxim S. Pshenichnikov, Paul H.M. van Loosdrecht

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

113 Citations (Scopus)

Abstract

Ultrafast dynamics of the hole-transfer process from methanofullerene to a polymer in a polymer/PCBM bulk heterojunction are directly resolved. Injection of holes into MDMO-PPV is markedly delayed with respect to [60]PCBM excitation. The fastest component of the delayed response is attributed to the PCBM-polymer hole-transfer process (30 +/- 10 fs), while the slower component (similar to 150 fs) is provisionally assigned to energy transfer and/or relaxation inside PCBM nanoclusters. The charge generation through the hole transfer is therefore as fast and efficient as through the electron-transfer process. Exciton harvesting efficiency after PCBM excitation crucially depends on the concentration of the methanofullerene in the blend, which is related to changes in the blend morphology. Ultrafast charge generation is most efficient when the characteristic scale of phase separation in the blend does not exceed similar to 20 nm. At larger-scale phase separation, the exciton harvesting dramatically declines. The obtained results on the time scales of the ultrafast charge generation after PCBM excitation and their dependence on blend composition and morphology are instrumental for the future design of fullerene-derivative-based photovoltaic devices.

Original languageEnglish
Pages (from-to)1653-1660
Number of pages8
JournalAdvanced Functional Materials
Volume20
Issue number10
DOIs
Publication statusPublished - 25-May-2010

Keywords

  • POLYFLUORENE COPOLYMER/FULLERENE BLENDS
  • CHARGE-TRANSFER ABSORPTION
  • ORGANIC SOLAR-CELLS
  • CONJUGATED POLYMERS
  • PHOTOINDUCED CHARGE
  • PHOTOVOLTAIC DEVICES
  • C-60 FILMS
  • THIN-FILMS
  • REAL-TIME
  • SPECTROSCOPY

Cite this