Unveiling hidden variability components in accreting X-ray binaries using both the Fourier power and cross-spectra

Mariano Méndez*, Valentina Peirano, Federico García, Tomaso Belloni, Diego Altamirano, Kevin Alabarta

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)
41 Downloads (Pure)

Abstract

We present a novel method for measuring the lags of (weak) variability components in neutron-star and black-hole low-mass X-ray binaries (LMXBs). For this we assume that the power and cross-spectra of these sources consists of a number of components that are coherent in different energy bands, but are incoherent with one another. The technique is based on fitting simultaneously the power spectrum (PS) and the Real and Imaginary parts of the cross-spectrum (CS) with a combination of Lorentzian functions. We show that, because the PS of LMXBs is insensitive to signals with a large Imaginary part and a small Real part in the CS, this approach allows us to uncover new variability components that are only detected in the CS. We also demonstrate that, contrary to earlier claims, the frequency of the type-C quasi-periodic oscillation (QPO) in the black-hole binary GRS 1915+105 does not depend on energy. Rather, the apparent energy dependence of the QPO frequency can be explained by the presence of a separate QPO component with a slightly higher frequency than that of the QPO, whose rms amplitude increases faster with energy than the rms amplitude of the QPO. From all the above we conclude that, as in the case of the PS, the CS of black-hole and neutron-star binaries can be fitted by a combination of Lorentzian components. Our findings provide evidence that the frequency-dependent part of the transfer function of these systems can be described by a combination of responses, each of them acting over relatively well-defined time-scales. This conclusion challenges models that assume that the main contribution to the lags comes from a global, broadband, transfer function of the accreting system.

Original languageEnglish
Pages (from-to)9405-9430
Number of pages26
JournalMonthly Notices of the Royal Astronomical Society
Volume527
Issue number3
DOIs
Publication statusPublished - 1-Jan-2024

Keywords

  • stars: black holes
  • stars: individual: GRS 1915+105
  • stars: individual: GX 339–4
  • stars: individual: MAXI J1820+070
  • X-rays: binaries

Fingerprint

Dive into the research topics of 'Unveiling hidden variability components in accreting X-ray binaries using both the Fourier power and cross-spectra'. Together they form a unique fingerprint.

Cite this