Use of population input functions for reduced scan duration whole-body Patlak F-18-FDG PET imaging

Joyce van Sluis*, Maqsood Yaqub, Adrienne H Brouwers, Rudi A J O Dierckx, Walter Noordzij, Ronald Boellaard

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Downloads (Pure)

Abstract

Whole-body Patlak images can be obtained from an acquisition of first 6 min of dynamic imaging over the heart to obtain the arterial input function (IF), followed by multiple whole-body sweeps up to 60 min pi. The use of a population-averaged IF (PIF) could exclude the first dynamic scan and minimize whole-body sweeps to 30-60 min pi. Here, the effects of (incorrect) PIFs on the accuracy of the proposed Patlak method were assessed. In addition, the extent of mitigating these biases through rescaling of the PIF to image-derived IF values at 30-60 min pi was evaluated.

METHODS: Using a representative IF and rate constants from the literature, various tumour time-activity curves (TACs) were simulated. Variations included multiplication of the IF with a positive and negative gradual linear bias over 60 min of 5, 10, 15, 20, and 25% (generating TACs using an IF different from the PIF); use of rate constants (K1, k3, and both K1 and k2) multiplied by 2, 1.5, and 0.75; and addition of noise (μ = 0 and σ = 5, 10 and 15%). Subsequent Patlak analysis using the original IF (representing the PIF) was used to obtain the influx constant (Ki) for the differently simulated TACs. Next, the PIF was scaled towards the (simulated) IF value using the 30-60-min pi time interval, simulating scaling of the PIF to image-derived values. Influence of variabilities in IF and rate constants, and rescaling the PIF on bias in Ki was evaluated.

RESULTS: Percentage bias in Ki observed using simulated modified IFs varied from - 16 to 16% depending on the simulated amplitude and direction of the IF modifications. Subsequent scaling of the PIF reduced these Ki biases in most cases (287 out of 290) to < 5%.

CONCLUSIONS: Simulations suggest that scaling of a (possibly incorrect) PIF to IF values seen in whole-body dynamic imaging from 30 to 60 min pi can provide accurate Ki estimates. Consequently, dynamic Patlak imaging protocols may be performed for 30-60 min pi making whole-body Patlak imaging clinically feasible.

Original languageEnglish
Article number11
Number of pages8
JournalEJNMMI physics
Volume8
Issue number1
Early online date5-Feb-2021
DOIs
Publication statusE-pub ahead of print - 5-Feb-2021

Keywords

  • Patlak
  • PET
  • CT
  • Dynamic imaging
  • Population input function
  • Scan time

Cite this