Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles

Zhao Tao Shi, Yi Xiong Hu, Zhubin Hu, Qi Zhang, Shao Yu Chen, Meng Chen, Jing Jing Yu, Guang Qiang Yin, Haitao Sun, Lin Xu, Xiaopeng Li, Ben L. Feringa*, Hai Bo Yang, He Tian, Da Hui Qu

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

10 Citations (Scopus)
38 Downloads (Pure)

Abstract

The organization of molecular motors in supramolecular assemblies to allow the amplification and transmission of motion and collective action is an important step toward future responsive systems. Metal-coordination-driven directional self-assembly into supramolecular metallacycles provides a powerful strategy to position several motor units in larger structures with well-defined geometries. Herein, we present a pyridyl-modified molecular motor ligand (MPY) which upon coordination with geometrically distinct di-Pt(II) acceptors assembles into discrete metallacycles of different sizes and shapes. This coordination leads to a red-shift of the absorption bands of molecular motors, making these motorized metallacycles responsive to visible light. Photochemical and thermal isomerization experiments demonstrated that the light-driven rotation of the motors in the metallacycles is similar to that in free MPY in solution. CD studies show that the helicity inversions associated with each isomerization step in the rotary cycle are preserved. To explore collective motion, the trimeric motor-containing metallacycle was aggregated with heparin through multiple electrostatic interactions, to construct a multi-component hierarchical system. SEM, TEM, and DLS measurements revealed that the photo- and thermal-responsive molecular motor units enabled selective manipulation of the secondary supramolecular aggregation process without dissociating the primary metallacycle structures. These visible-light-responsive metallacycles, with intrinsic multiple rotary motors, offer prospects for cooperative operations, dynamic hierarchical self-assembled systems, and adaptive materials.

Original languageEnglish
Pages (from-to)442-452
Number of pages11
JournalJournal of the American Chemical Society
Volume143
Issue number1
DOIs
Publication statusPublished - 13-Jan-2021

Cite this