Warming effects on the life cycles of two parasitic copepods with different invasion histories

Elli Rosa Emilia Jolma*, Ana Born-Torrijos, Hans Heesterbeek, Anieke van Leeuwen, Sonja Maria van Leeuwen, Robert H. Twijnstra, K. Mathias Wegner, David W. Thieltges

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)
30 Downloads (Pure)

Abstract

Climate change may exacerbate the impact of invasive parasites from warmer climates through pre-existing temperature adaptations. We investigated temperature impacts on two closely related marine parasitic copepod species that share the blue mussel (Mytilus edulis) as host: Mytilicola orientalis has invaded the system from a warmer climate <20 years ago, whereas its established congener Mytilicola intestinalis has had >90 years to adapt. In laboratory experiments with temperatures 10–26°C, covering current and future temperatures as well as heat waves, the development of both life cycle stages of both species accelerated with increasing temperature. In the parasitic stages, the growth of the established invader increased evenly from 10°C to 22°C, whereas the recent invader barely grew at all at 10°C and grew faster already at 18°C. In contrast, temperature had little effect on the transition success between life cycle stages. However, the highest temperature (26°C) limited the egg development success of the established invader and the host entry success of both species, whereas the infection success of the established invader increased at 18°C and 22°C. In general, our experiments indicate that the main effect of temperature on both species is through development speed and not life cycle stage transition success. Based on regional long-term temperature data and predictions, the numbers of completed life cycles per year will increase for both parasites. The established invader seems better adapted for low current temperatures (around 10°C), whereas the more recent invader barely develops at these temperatures but can cope in high temperatures (around 26°C). Hence, pre-existing temperature adaptations of the recent invader may allow the species to better cope with heat waves.

Original languageEnglish
Article numbere11485
Number of pages16
JournalEcology and Evolution
Volume14
Issue number6
DOIs
Publication statusPublished - Jun-2024

Keywords

  • climate change
  • copepod
  • invasive species
  • Mytilicola intestinalis
  • Mytilicola orientalis
  • Mytilus edulis
  • parasite

Fingerprint

Dive into the research topics of 'Warming effects on the life cycles of two parasitic copepods with different invasion histories'. Together they form a unique fingerprint.

Cite this