Water vapor toward starless cores: The Herschel view

P. Caselli*, E. Keto, L. Pagani, Y. Aikawa, U. A. Yildiz, F. F. S. van der Tak, M. Tafalla, E. A. Bergin, B. Nisini, C. Codella, E. F. van Dishoeck, R. Bachiller, A. Baudry, M. Benedettini, A. O. Benz, P. Bjerkeli, G.A. Blake, S. Bontemps, J. Braine, S. BrudererJ. Cernicharo, F. Daniel, A. M. di Giorgio, C. Dominik, S. D. Doty, P. Encrenaz, M. Fich, A. Fuente, T. Gaier, T. Giannini, J. R. Goicoechea, Th. de Graauw, F. Helmich, G. J. Herczeg, F. Herpin, M. R. Hogerheijde, B. Jackson, T. Jacq, H. Javadi, D. Johnstone, J. K. Jorgensen, D. Kester, L. E. Kristensen, W. Laauwen, B. Larsson, D. Lis, R. Liseau, W. Luinge, M. Marseille, C. McCoey, A. Megej, G. Melnick, D. Neufeld, M. Olberg, B. Parise, J. C. Pearson, R. Plume, C. Risacher, J. Santiago-Garcia, P. Saraceno, R. Shipman, P. Siegel, T. A. van Kempen, R. Visser, S. F. Wampfler, F. Wyrowski

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

46 Citations (Scopus)
188 Downloads (Pure)

Abstract

Aims. Previous studies by the satellites SWAS and Odin provided stringent upper limits on the gas phase water abundance of dark clouds (x(H2O) <7 x 10(-9)). We investigate the chemistry of water vapor in starless cores beyond the previous upper limits using the highly improved angular resolution and sensitivity of Herschel and measure the abundance of water vapor during evolutionary stages just preceding star formation.

Methods. High spectral resolution observations of the fundamental ortho water (o-H2O) transition (557 GHz) were carried out with the Heterodyne Instrument for the Far Infrared onboard Herschel toward two starless cores: Barnard 68 (hereafter B68), a Bok globule, and LDN 1544 (L1544), a prestellar core embedded in the Taurus molecular cloud complex. Detailed radiative transfer and chemical codes were used to analyze the data.

Results. The RMS in the brightness temperature measured for the B68 and L1544 spectra is 2.0 and 2.2 mK, respectively, in a velocity bin of 0.59 km s(-1). The continuum level is 3.5 +/- 0.2 mK in B68 and 11.4 +/- 0.4 mK in L1544. No significant feature is detected in B68 and the 3 sigma upper limit is consistent with a column density of o-H2O N(o-H2O) <2.5 x 10(13) cm(-2), or a fractional abundance x(o-H2O) <1.3 x 10(-9), more than an order of magnitude lower than the SWAS upper limit on this source. The L1544 spectrum shows an absorption feature at a 5 sigma level from which we obtain the first value of the o-H2O column density ever measured in dark clouds: N(o-H2O) = (8 +/- 4) x 10(12) cm(-2). The corresponding fractional abundance is x(o-H2O) similar or equal to 5 x 10(-9) at radii > 7000 AU and similar or equal to 2 x 10(-10) toward the center. The radiative transfer analysis shows that this is consistent with a x(o-H2O) profile peaking at similar or equal to 10(-8), 0.1 pc away from the core center, where both freeze-out and photodissociation are negligible.

Conclusions. Herschel has provided the first measurement of water vapor in dark regions. Column densities of o-H2O are low, but prestellar cores such as L1544 (with their high central densities, strong continuum, and large envelopes) appear to be very promising tools to finally shed light on the solid/vapor balance of water in molecular clouds and oxygen chemistry in the earliest stages of star formation.

Original languageEnglish
Article number29
Number of pages5
JournalAstronomy & Astrophysics
Volume521
DOIs
Publication statusPublished - Oct-2010

Keywords

  • astrochemistry
  • line: formation
  • molecular processes
  • radiative transfer
  • stars: formation
  • ISM: clouds
  • DENSE INTERSTELLAR CLOUDS
  • PRE-STELLAR CORES
  • MOLECULAR-IONS
  • INITIAL CONDITIONS
  • PRESTELLAR CORES
  • ABUNDANCE
  • L1544
  • TEMPERATURE
  • DEPLETION
  • OXYGEN

Fingerprint

Dive into the research topics of 'Water vapor toward starless cores: The Herschel view'. Together they form a unique fingerprint.

Cite this