TY - JOUR
T1 - Zwitterionic poly(sulfobetaine methacrylate)-based hydrogel coating for drinking water distribution systems to inhibit adhesion of waterborne bacteria
AU - Sójka, Olga
AU - van der Mei, Henny C.
AU - van Rijn, Patrick
AU - Gagliano, Maria Cristina
N1 - Funding Information:
This work was performed in the cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology ( www.wetsus.nl ). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the European Union Regional Development Fund, the Province of Fryslân and the Northern Netherlands Provinces. This research received funding from Netherlands Organization for Scientific Research (NWO) in the framework of the collaboration programme of NWO with Wetsus on Sustainable Water Technology under grant No. ALWET.2017.003.
Funding Information:
This work was performed in the cooperation framework of Wetsus, European Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is co-funded by the Dutch Ministry of Economic Affairs and Ministry of Infrastructure and Environment, the European Union Regional Development Fund, the Province of Fryslân and the Northern Netherlands Provinces. This research received funding from Netherlands Organization for Scientific Research (NWO) in the framework of the collaboration programme of NWO with Wetsus on Sustainable Water Technology under grant No. ALWET.2017.003.
Publisher Copyright:
Copyright © 2023 Sójka, van der Mei, van Rijn and Gagliano.
PY - 2023/2/21
Y1 - 2023/2/21
N2 - Presence of biofilms in drinking water distribution systems (DWDS) can be a nuisance, leading to several operational and maintenance issues (i.e., increased secondary disinfectants demand, pipe damage or increased flow resistance), and so far, no single control practice was found to be sufficiently effective. Here, we propose poly (sulfobetaine methacrylate) (P(SBMA))-based hydrogel coating application as a biofilm control strategy in DWDS. The P(SBMA) coating was synthetized through photoinitiated free radical polymerization on polydimethylsiloxane with different combinations of SBMA as a monomer, and N, N′-methylenebis (acrylamide) (BIS) as a cross-linker. The most stable coating in terms of its mechanical properties was obtained using 20% SBMA with a 20:1 SBMA:BIS ratio. The coating was characterized using Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and water contact angle measurements. The anti-adhesive performance of the coating was evaluated in a parallel-plate flow chamber system against adhesion of four bacterial strains representing genera commonly identified in DWDS biofilm communities, Sphingomonas and Pseudomonas. The selected strains exhibited varying adhesion behaviors in terms of attachment density and bacteria distribution on the surface. Despite these differences, after 4 h, presence of the P(SBMA)-based hydrogel coating significantly reduced the number of adhering bacteria by 97%, 94%, 98% and 99%, for Sphingomonas Sph5, Sphingomonas Sph10, Pseudomonas extremorientalis and Pseudomonas aeruginosa, respectively, compared to non-coated surfaces. These findings motivate further research into a potential application of a hydrogel anti-adhesive coating as a localized biofilm control strategy in DWDS, especially on materials known to promote excessive biofilm growth.
AB - Presence of biofilms in drinking water distribution systems (DWDS) can be a nuisance, leading to several operational and maintenance issues (i.e., increased secondary disinfectants demand, pipe damage or increased flow resistance), and so far, no single control practice was found to be sufficiently effective. Here, we propose poly (sulfobetaine methacrylate) (P(SBMA))-based hydrogel coating application as a biofilm control strategy in DWDS. The P(SBMA) coating was synthetized through photoinitiated free radical polymerization on polydimethylsiloxane with different combinations of SBMA as a monomer, and N, N′-methylenebis (acrylamide) (BIS) as a cross-linker. The most stable coating in terms of its mechanical properties was obtained using 20% SBMA with a 20:1 SBMA:BIS ratio. The coating was characterized using Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and water contact angle measurements. The anti-adhesive performance of the coating was evaluated in a parallel-plate flow chamber system against adhesion of four bacterial strains representing genera commonly identified in DWDS biofilm communities, Sphingomonas and Pseudomonas. The selected strains exhibited varying adhesion behaviors in terms of attachment density and bacteria distribution on the surface. Despite these differences, after 4 h, presence of the P(SBMA)-based hydrogel coating significantly reduced the number of adhering bacteria by 97%, 94%, 98% and 99%, for Sphingomonas Sph5, Sphingomonas Sph10, Pseudomonas extremorientalis and Pseudomonas aeruginosa, respectively, compared to non-coated surfaces. These findings motivate further research into a potential application of a hydrogel anti-adhesive coating as a localized biofilm control strategy in DWDS, especially on materials known to promote excessive biofilm growth.
KW - anti-adhesive coating
KW - bacterial adhesion
KW - biofilm
KW - drinking water distribution
KW - zwitterionic hydrogels
U2 - 10.3389/fbioe.2023.1066126
DO - 10.3389/fbioe.2023.1066126
M3 - Article
C2 - 36896012
AN - SCOPUS:85149623783
SN - 2296-4185
VL - 11
JO - Frontiers in Bioengineering and Biotechnology
JF - Frontiers in Bioengineering and Biotechnology
M1 - 1066126
ER -