TY - JOUR
T1 - A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine
AU - den Bosch, Heleen M. de Vogel-van
AU - de Wit, Nicole J. W.
AU - Hooiveld, Guido J. E. J.
AU - Vermeulen, Hanneke
AU - van der Veen, Jelske N.
AU - Houten, Sander M.
AU - Kuipers, Folkert
AU - Mueller, Michael
AU - van der Meer, Roelof
PY - 2008/5
Y1 - 2008/5
N2 - A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastrointest Liver Physiol 294: G1171-G1180, 2008. First published March 20, 2008; doi:10.1152/ajpgi.00360.2007.-Transporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 ( Npc1l1) transports cholesterol into the enterocyte, whereas ATP-binding cassette transporters Abca1 and Abcg5/Abcg8 are presumed to be involved in cholesterol efflux from the enterocyte toward plasma HDL and back into the intestinal lumen, respectively. Abca1, Abcg5, and Abcg8 are well-established liver X receptor (LXR) target genes. We examined the effects of a high-fat diet on expression and function of cholesterol transporters in the small intestine in mice. Npc1l1, Abca1, Abcg5, and Abcg8 were all down-regulated after 2, 4, and 8 wk on a cholesterol-free, high-fat diet. The high-fat diet did not affect biliary cholesterol secretion but diminished fractional cholesterol absorption from 61 to 42% ( P <0.05). In an acute experiment in which triacylglycerols of unsaturated fatty acids were given by gavage, we found that this downregulation occurs within a 6-h time frame. Studies in LXR alpha- null mice, confirmed by in vitro data, showed that fatty acid-induced downregulation of cholesterol transporters is LXR alpha independent and associated with a posttranslational increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity that reflects induction of cholesterol biosynthesis as well as with a doubling of neutral fecal sterol loss. This study highlights the induction of adaptive changes in small intestinal cholesterol metabolism during exposure to dietary fat.
AB - A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine. Am J Physiol Gastrointest Liver Physiol 294: G1171-G1180, 2008. First published March 20, 2008; doi:10.1152/ajpgi.00360.2007.-Transporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 ( Npc1l1) transports cholesterol into the enterocyte, whereas ATP-binding cassette transporters Abca1 and Abcg5/Abcg8 are presumed to be involved in cholesterol efflux from the enterocyte toward plasma HDL and back into the intestinal lumen, respectively. Abca1, Abcg5, and Abcg8 are well-established liver X receptor (LXR) target genes. We examined the effects of a high-fat diet on expression and function of cholesterol transporters in the small intestine in mice. Npc1l1, Abca1, Abcg5, and Abcg8 were all down-regulated after 2, 4, and 8 wk on a cholesterol-free, high-fat diet. The high-fat diet did not affect biliary cholesterol secretion but diminished fractional cholesterol absorption from 61 to 42% ( P <0.05). In an acute experiment in which triacylglycerols of unsaturated fatty acids were given by gavage, we found that this downregulation occurs within a 6-h time frame. Studies in LXR alpha- null mice, confirmed by in vitro data, showed that fatty acid-induced downregulation of cholesterol transporters is LXR alpha independent and associated with a posttranslational increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity that reflects induction of cholesterol biosynthesis as well as with a doubling of neutral fecal sterol loss. This study highlights the induction of adaptive changes in small intestinal cholesterol metabolism during exposure to dietary fat.
KW - cholesterol absorption
KW - ABC transporters
KW - Npc1l1
KW - fatty acids
KW - LIVER-X-RECEPTOR
KW - CELLULAR CHOLESTEROL
KW - CACO-2 CELLS
KW - LXR-ALPHA
KW - ABSORPTION
KW - MICE
KW - SECRETION
KW - METABOLISM
KW - ACTIVATION
KW - EXCRETION
U2 - 10.1152/ajpgi.00360.2007
DO - 10.1152/ajpgi.00360.2007
M3 - Article
SN - 0193-1857
VL - 294
SP - G1171-G1180
JO - American Journal of Physiology-Gastrointestinal and Liver Physiology
JF - American Journal of Physiology-Gastrointestinal and Liver Physiology
IS - 5
ER -