A factor mixture model for multivariate survival data: an application to the analysis of lifetime mental disorders

Josue Almansa*, Jeroen K. Vermunt, Carlos G. Forero, Jordi Alonso

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

6 Citaten (Scopus)

Samenvatting

The assessment of the lifetime prevalence of mental disorders under comorbidity conditions is an important area in mental health research. Because information on lifetime disorders is usually gathered retrospectively within cross-sectional studies, the information is necessarily right censored and this should be taken into account when setting up models for the estimation of lifetime prevalences. We propose a factor analytic discrete time survival model combining mixture item response theory and discrete time hazard functions to describe disorder associations while accounting for censoring. This model is used for describing the lifetime prevalence and comorbidity of eight depression and anxiety disorders from the European Study of the Epidemiology of Mental Disorders.

Originele taal-2English
Pagina's (van-tot)85-102
Aantal pagina's18
TijdschriftJournal of the Royal Statistical Society. Series C: Applied Statistics
Volume63
Nummer van het tijdschrift1
DOI's
StatusPublished - jan.-2014
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'A factor mixture model for multivariate survival data: an application to the analysis of lifetime mental disorders'. Samen vormen ze een unieke vingerafdruk.

Citeer dit