A general algorithm for computing distance transforms in linear time

OnderzoeksoutputAcademicpeer review

485 Downloads (Pure)

Samenvatting

A new general algorithm fur computing distance transforms of digital images is presented. The algorithm consists of two phases. Both phases consist of two scans, a forward and a backward scan. The first phase scans the image column-wise, while the second phase scans the image row-wise. Since the computation per row (column) is independent of the computation of other rows (columns), the algorithm can be easily parallelized on shared memory computers. The algorithm can be used for the computation of the exact Euclidean, manhattan (L-1 norm), and chessboard distance (L-infinity norm) transforms.

Originele taal-2English
TitelMATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING
RedacteurenJ Goutsias, L Vincent, DS Bloomberg
Plaats van productieNORWELL
UitgeverijUniversity of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science
Pagina's331-340
Aantal pagina's10
ISBN van elektronische versie030647025X
ISBN van geprinte versie0-7923-7862-8
StatusPublished - 2000
Evenement5th International Symposium on Mathematical Morphology (ISMM) - , Canada
Duur: 26-jun-200029-jun-2000

Publicatie series

NaamCOMPUTATIONAL IMAGING AND VISION
UitgeverijKLUWER ACADEMIC PUBLISHERS
Volume18

Other

Other5th International Symposium on Mathematical Morphology (ISMM)
Land/RegioCanada
Periode26/06/200029/06/2000

Citeer dit