A Kernel Representation of Dirac Structures for Infinite-dimensional Systems

Orest Iftime, M. Roman, A. Sandovici*

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

5 Citaten (Scopus)
318 Downloads (Pure)

Samenvatting

Dirac structures are used as the underlying structure to mathematically formalize port-Hamiltonian systems. This note approaches the Dirac structures for infinite-dimensional systems using the theory of linear relations on Hilbert spaces. First, a kernel representation for a Dirac structure is proposed. The one-to-one correspondence between Dirac structures and unitary operators is revisited. Further, the proposed kernel representation and a scattering representation are constructively related. Several illustrative examples are also presented in the paper.

Originele taal-2English
Pagina's (van-tot)295-308
Aantal pagina's14
Tijdschrift Mathematical Modelling of Natural Phenomena
Volume9
Nummer van het tijdschrift5
DOI's
StatusPublished - 2014

Vingerafdruk

Duik in de onderzoeksthema's van 'A Kernel Representation of Dirac Structures for Infinite-dimensional Systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit