A Lagrangian Fibration of the Isotropic 3-Dimensional Harmonic Oscillator with Monodromy

I. Chiscop, H. R. Dullin, K. Efstathiou, H. Waalkens

OnderzoeksoutputAcademicpeer review

3 Citaten (Scopus)
858 Downloads (Pure)

Samenvatting

The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three Poisson commuting integrals and, correspondingly, three commuting operators, one of which is the Hamiltonian. We show that the Lagrangian fibration defined by the Hamiltonian, the z component of the angular momentum, and a quartic integral obtained from separation in prolate spheroidal coordinates has a non-degenerate focus-focus point, and hence, non-trivial Hamiltonian monodromy for sufficiently large energies. The joint spectrum defined by the corresponding commuting quantum operators has non-trivial quantum monodromy implying that one cannot globally assign quantum numbers to the joint spectrum. Published under license by AIP Publishing.
Originele taal-2English
Artikelnummer032103
Aantal pagina's15
TijdschriftJournal of Mathematical Physics
Volume60
Nummer van het tijdschrift3
DOI's
StatusPublished - mrt.-2019

Vingerafdruk

Duik in de onderzoeksthema's van 'A Lagrangian Fibration of the Isotropic 3-Dimensional Harmonic Oscillator with Monodromy'. Samen vormen ze een unieke vingerafdruk.

Citeer dit