A Multilingual Approach to Identify and Classify Exceptional Measures against COVID-19

OnderzoeksoutputAcademicpeer review

6 Citaten (Scopus)
164 Downloads (Pure)

Samenvatting

The COVID-19 pandemic has witnessed the implementations of exceptional measures by governments across the world to counteract its impact. This work presents the initial results of an on-going project, EXCEPTIUS, aiming to automatically identify, classify and com- pare exceptional measures against COVID-19 across 32 countries in Europe. To this goal, we created a corpus of legal documents with sentence-level annotations of eight different classes of exceptional measures that are im- plemented across these countries. We evalu- ated multiple multi-label classifiers on a manu- ally annotated corpus at sentence level. The XLM-RoBERTa model achieves highest per- formance on this multilingual multi-label clas- sification task, with a macro-average F1 score of 59.8%.
Originele taal-2English
TitelProceedings of the Natural Legal Language Processing Workshop 2021
RedacteurenNikolaos Aletras, Ion Androutsopoulos, Leslie Barrett, Catalina Goanta, Daniel Preotiuc-Pietro
UitgeverijAssociation for Computational Linguistics (ACL)
Pagina's46-62
Aantal pagina's17
StatusPublished - 2021
EvenementNatural Legal Language Processing Workshop 2021 -
Duur: 10-nov.-2021 → …
https://nllpw.org/workshop/

Conference

ConferenceNatural Legal Language Processing Workshop 2021
Periode10/11/2021 → …
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'A Multilingual Approach to Identify and Classify Exceptional Measures against COVID-19'. Samen vormen ze een unieke vingerafdruk.

Citeer dit