A numerical model for chemo-thermo-mechanical coupling at large strains with an application to thermoresponsive hydrogels

Florian Brunner, Tristan Seidlhofer, Manfred H. Ulz*

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

3 Citaten (Scopus)
47 Downloads (Pure)

Samenvatting

The aim of this work is the derivation and examination of a material model, accounting for large elastic deformations, coupled with species diffusion and thermal effects. This chemo-thermo-mechanical material model shows three key aspects regarding its numerical formulation. Firstly, a multiplicative split of the deformation gradient into a mechanical, a swelling and a thermal part. Secondly, temperature-scaled gradients for a numerical design comprising symmetric tangents and, thirdly, dissipation potentials for the modelling of dissipative effects. Additionally, the derived general material model is specialised to thermoresponsive hydrogels to study its predictive capabilities for a relevant example material class. An appropriate finite element formulation is established and its implementation discussed. Numerical examples are investigated, including phase transition and stability phenomena, to verify the ability of the derived chemo-thermo-mechanical material model to predict relevant physical effects properly. We compare our results to established models in the literature and discuss emerging deviations.

Originele taal-2English
Pagina's (van-tot)509-536
Aantal pagina's28
TijdschriftComputational Mechanics
Volume74
Vroegere onlinedatum16-feb.-2024
DOI's
StatusPublished - sep.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'A numerical model for chemo-thermo-mechanical coupling at large strains with an application to thermoresponsive hydrogels'. Samen vormen ze een unieke vingerafdruk.

Citeer dit