A photonics perspective on computing with physical substrates

S. Abreu, I. Boikov, M. Goldmann, T. Jonuzi, A. Lupo, S. Masaad, L. Nguyen, E. Picco, G. Pourcel, A. Skalli, L. Talandier, B. Vettelschoss, E. A. Vlieg, A. Argyris, P. Bienstman, D. Brunner, J. Dambre, L. Daudet, J. D. Domenech, I. FischerF. Horst, S. Massar, C. R. Mirasso, B. J. Offrein, A. Rossi, M. C. Soriano*, S. Sygletos, S. K. Turitsyn

*Corresponding author voor dit werk

Onderzoeksoutputpeer review

25 Downloads (Pure)

Samenvatting

We provide a perspective on the fundamental relationship between physics and computation, exploring the conditions under which a physical system can be harnessed for computation and the practical means to achieve this. Unlike traditional digital computers that impose discreteness on continuous substrates, unconventional computing embraces the inherent properties of physical systems. Exploring simultaneously the intricacies of physical implementations and applied computational paradigms, we discuss the interdisciplinary developments of unconventional computing. Here, we focus on the potential of photonic substrates for unconventional computing, implementing artificial neural networks to solve data-driven machine learning tasks. Several photonic neural network implementations are discussed, highlighting their potential advantages over electronic counterparts in terms of speed and energy efficiency. Finally, we address the challenges of achieving learning and programmability within physical substrates, outlining key strategies for future research.

Originele taal-2English
Artikelnummer100093
Aantal pagina's25
TijdschriftReviews in Physics
Volume12
Vroegere onlinedatum25-jun.-2024
DOI's
StatusE-pub ahead of print - 25-jun.-2024

Vingerafdruk

Duik in de onderzoeksthema's van 'A photonics perspective on computing with physical substrates'. Samen vormen ze een unieke vingerafdruk.

Citeer dit