TY - JOUR
T1 - A three-step algorithm for CANDECOMP/PARAFAC analysis of large data sets with multicollinearity
AU - Kiers, H.A.L.
PY - 1999/5/4
Y1 - 1999/5/4
N2 - Fitting the CANDECOMP/PARAFAC model by the standard alternating least squares algorithm often requires very many iterations. One case in point is that of analysing data with mild to severe multicollinearity. If, in addition, the size of the data is large, the computation of one CANDECOMP/PARAFAC solution is very time-consuming. The present paper describes a three-step procedure which is much more efficient than the ordinary CANDECOMP/PARAFAC algorithm, by combining the idea of data compression with a form of regularization of the compressed data array. (C) 1998 John Wiley & Sons, Ltd.
AB - Fitting the CANDECOMP/PARAFAC model by the standard alternating least squares algorithm often requires very many iterations. One case in point is that of analysing data with mild to severe multicollinearity. If, in addition, the size of the data is large, the computation of one CANDECOMP/PARAFAC solution is very time-consuming. The present paper describes a three-step procedure which is much more efficient than the ordinary CANDECOMP/PARAFAC algorithm, by combining the idea of data compression with a form of regularization of the compressed data array. (C) 1998 John Wiley & Sons, Ltd.
KW - three-way analysis
KW - trilinear decomposition
KW - CANDECOMP/PARAFAC
KW - multicollinearity
KW - PRINCIPAL COMPONENT ANALYSIS
KW - CALIBRATION
U2 - 10.1002/(sici)1099-128x(199805/06)12:3<155::aid-cem502>3.3.co;2-x
DO - 10.1002/(sici)1099-128x(199805/06)12:3<155::aid-cem502>3.3.co;2-x
M3 - Article
SN - 0886-9383
VL - 12
SP - 155
EP - 171
JO - Journal of Chemometrics
JF - Journal of Chemometrics
IS - 3
ER -