A three-step algorithm for CANDECOMP/PARAFAC analysis of large data sets with multicollinearity

H.A.L. Kiers*

*Corresponding author voor dit werk

    Onderzoeksoutput: ArticleAcademicpeer review

    70 Citaten (Scopus)

    Samenvatting

    Fitting the CANDECOMP/PARAFAC model by the standard alternating least squares algorithm often requires very many iterations. One case in point is that of analysing data with mild to severe multicollinearity. If, in addition, the size of the data is large, the computation of one CANDECOMP/PARAFAC solution is very time-consuming. The present paper describes a three-step procedure which is much more efficient than the ordinary CANDECOMP/PARAFAC algorithm, by combining the idea of data compression with a form of regularization of the compressed data array. (C) 1998 John Wiley & Sons, Ltd.

    Originele taal-2English
    Pagina's (van-tot)155-171
    Aantal pagina's17
    TijdschriftJournal of Chemometrics
    Volume12
    Nummer van het tijdschrift3
    DOI's
    StatusPublished - 4-mei-1999

    Vingerafdruk

    Duik in de onderzoeksthema's van 'A three-step algorithm for CANDECOMP/PARAFAC analysis of large data sets with multicollinearity'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit