A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics

E.J. Pap*, D. Boer, H. Waalkens

*Corresponding author voor dit werk

Onderzoeksoutput: ArticleAcademicpeer review

5 Citaten (Scopus)
228 Downloads (Pure)

Samenvatting

We present a formal geometric framework for the study of adiabatic quantum mechanics for arbitrary finite-dimensional non-degenerate Hamiltonians. This framework generalizes earlier holonomy interpretations of the geometric phase to non-cyclic states appearing for non-Hermitian Hamiltonians. We start with an investigation of the space of non-degenerate operators on a finite-dimensional state space. We then show how the energy bands of a Hamiltonian family form a covering space. Likewise, we show that the eigenrays form a bundle, a generalization of a principal bundle, which admits a natural connection yielding the (generalized) geometric phase. This bundle provides in addition a natural generalization of the quantum geometric tensor and derived tensors, and we show how it can incorporate the non-geometric dynamical phase as well. We finish by demonstrating how the bundle can be recast as a principal bundle, so that both the geometric phases and the permutations of eigenstates can be expressed simultaneously by means of standard holonomy theory.
Originele taal-2English
Artikelnummer003
Aantal pagina's42
TijdschriftSIGMA
Volume18
Vroegere onlinedatum28-dec.-2021
DOI's
StatusPublished - 13-jan.-2022

Vingerafdruk

Duik in de onderzoeksthema's van 'A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics'. Samen vormen ze een unieke vingerafdruk.

Citeer dit