Samenvatting
TNFR superfamily (TNFRSF) members have important immunoregulatory functions and are of clear interest for cancer immunotherapy. Various TNFRSF agonists have been clinically evaluated, but have met with limited efficacy and/or toxicity. Recent insights indicate that 'first-generation' TNFRSF agonists lack efficacy as they do not effectively cross-link their corresponding receptor. Reversely, ubiquitous TNFRSF receptor(s) cross-linking by CD40 and Fas agonistic antibodies resulted in dose-limiting liver toxicity. To overcome these issues, we developed a novel pretargeting strategy exploiting recombinant fusion proteins in which a soluble form of TRAIL, FasL or CD40L is genetically fused to a high-affinity anti-fluorescein scFv antibody fragment (scFvFITC). Fusion proteins scFvFITC: sTRAIL and scFvFITC: sFasL induced potent target antigen-restricted apoptosis in a panel of cancer lines and in primary patient-derived cancer cells, but only when pretargeted with a relevant FITC-labelled antitumour antibody. In a similar pretargeting setting, fusion protein scFvFITC: sCD40L promoted tumour-directed maturation of immature monocyte-derived dendritic cells (iDCs). This novel tumour-selective pretargeting approach may be used to improve efficacy and/or reduce possible off-target toxicity of TNFSF ligands for cancer immunotherapy.
Originele taal-2 | English |
---|---|
Artikelnummer | 13301 |
Aantal pagina's | 11 |
Tijdschrift | Scientific Reports |
Volume | 7 |
DOI's | |
Status | Published - 16-okt.-2017 |