Samenvatting
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm-Liouville operator A = sign(x)(-Delta+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 223-245 |
Aantal pagina's | 23 |
Tijdschrift | Operators and matrices |
Volume | 10 |
Nummer van het tijdschrift | 1 |
DOI's | |
Status | Published - mrt.-2016 |