Adaptive Finite Element Approximations of the First Eigenpair Associated with p-Laplacian

Guanglian Li, Jing Li, Julie Merten, Yifeng Xu*, Shengfeng Zhu

*Corresponding author voor dit werk

OnderzoeksoutputAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In this paper, we propose an adaptive finite element method for computing the first eigenpair of the p-Laplacian problem. We prove that by starting from a fine initial mesh our proposed adaptive algorithm produces a sequence of discrete first eigenvalues that converges to the first eigenvalue of the continuous problem, and the distance between discrete eigenfunctions and the normalized eigenfunction set corresponding to the first eigenvalue in W1,p-norm also tends to zero. Extensive numerical examples are provided to show the effectiveness and efficiency.

Originele taal-2English
Pagina's (van-tot)A374-A402
Aantal pagina's29
TijdschriftSIAM Journal on Scientific Computing
Volume47
Nummer van het tijdschrift1
DOI's
StatusPublished - feb.-2025

Vingerafdruk

Duik in de onderzoeksthema's van 'Adaptive Finite Element Approximations of the First Eigenpair Associated with p-Laplacian'. Samen vormen ze een unieke vingerafdruk.

Citeer dit