Adaptivity and group invariance in mathematical morphology

OnderzoeksoutputAcademicpeer review

37 Citaten (Scopus)
315 Downloads (Pure)

Samenvatting

The standard morphological operators are (i) defined on Euclidean space, (ii) based on structuring elements, and (iii) invariant with respect to translation. There are several ways to generalise this. One way is to make the operators adaptive by letting the size or shape of structuring elements depend on image location or on image features. Another one is to extend translation invariance to more general invariance groups, where the shape of the structuring element spatially adapts in such a way that global group invariance is maintained. We review group-invariant morphology, discuss the relations with adaptive morphology, point out some pitfalls, and show that there is no inherent incompatibility between a spatially adaptive structuring element and global translation invariance of the corresponding morphological operators.
Originele taal-2English
Titel2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6
Plaats van productieNEW YORK
UitgeverijIEEE (The Institute of Electrical and Electronics Engineers)
Pagina's2229-2232
Aantal pagina's4
ISBN van elektronische versie9781424456550
ISBN van geprinte versie978-1-4244-5653-6
StatusPublished - 2009
Evenement16th IEEE International Conference on Image Processing - , Egypt
Duur: 7-nov.-200910-nov.-2009

Other

Other16th IEEE International Conference on Image Processing
Land/RegioEgypt
Periode07/11/200910/11/2009

Vingerafdruk

Duik in de onderzoeksthema's van 'Adaptivity and group invariance in mathematical morphology'. Samen vormen ze een unieke vingerafdruk.

Citeer dit