TY - JOUR
T1 - Advanced porous materials for antimicrobial treatment
AU - Miguel Sábio, Rafael
AU - Corrêa Carvalho, Gabriela
AU - Li, Jiachen
AU - Chorilli, Marlus
AU - Santos, Hélder A.
PY - 2023/10/31
Y1 - 2023/10/31
N2 - Infectious diseases are a global public health concern generated by uncontrolled uses of antimicrobials resulting in multidrug-resistant (MDR) pathogens. The antimicrobial resistance (AMR) has made explicit the ineffective action of the current medicines and vaccines. Rapid diagnosis and effective treatment are the keys to reduce the capacity of MDR pathogens spreading very fast, avoiding high socioeconomic impact, severe and prolonged illness and death. Advanced porous materials have emerged as promising alternatives to the conventional diagnoses and therapy due to their low-cost production, high biocompatibility, adjustable porous structure, large surface area, easy surface functionalization and capacity of loading high drugs amount. In this review, we first highlighted the current strategies to fight against infectious diseases. Then, we introduce the main advanced porous materials used in infectious diseases, including mesoporous silica nanoparticles (MSNs), porous silicon nanoparticles (PSiNPs), metal?organic frameworks (MOFs), covalent?organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and porous carbon materials. The strategies to fabricate these materials and their characterization for the application in the recent years for antimicrobial treatment is also discussed. Finally, we present an overview outlook and challenges on the future application of such materials for infectious diseases.
AB - Infectious diseases are a global public health concern generated by uncontrolled uses of antimicrobials resulting in multidrug-resistant (MDR) pathogens. The antimicrobial resistance (AMR) has made explicit the ineffective action of the current medicines and vaccines. Rapid diagnosis and effective treatment are the keys to reduce the capacity of MDR pathogens spreading very fast, avoiding high socioeconomic impact, severe and prolonged illness and death. Advanced porous materials have emerged as promising alternatives to the conventional diagnoses and therapy due to their low-cost production, high biocompatibility, adjustable porous structure, large surface area, easy surface functionalization and capacity of loading high drugs amount. In this review, we first highlighted the current strategies to fight against infectious diseases. Then, we introduce the main advanced porous materials used in infectious diseases, including mesoporous silica nanoparticles (MSNs), porous silicon nanoparticles (PSiNPs), metal?organic frameworks (MOFs), covalent?organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and porous carbon materials. The strategies to fabricate these materials and their characterization for the application in the recent years for antimicrobial treatment is also discussed. Finally, we present an overview outlook and challenges on the future application of such materials for infectious diseases.
KW - antimicrobial applications
KW - Infectious diseases
KW - organic-based frameworks materials
KW - porous carbon materials
KW - silica-based porous materials
U2 - 10.1002/nano.202300114
DO - 10.1002/nano.202300114
M3 - Review article
SN - 2688-4011
JO - Nano Select
JF - Nano Select
ER -