Approximation by Conic Splines

Sunayana Ghosh, Sylvain Petitjean, Gert Vegter

    Onderzoeksoutput: ArticleAcademic

    1 Citaat (Scopus)
    22 Downloads (Pure)

    Samenvatting

    We show that the complexity of a parabolic or conic spline approximating a sufficiently smooth curve with non-vanishing curvature to within Hausdorff distance ε is c1ε^−1/4 + O(1), if the spline consists of parabolic arcs, and c2ε^−1/5 + O(1), if it is composed of general conic arcs of varying type. The constants c1 and c2 are expressed in the Euclidean and affine curvature of the curve. We also show that the Hausdorff distance between a curve and an optimal conic arc tangent at its endpoints is increasing with its arc length, provided the affine curvature along the arc is monotone. This property yields a simple bisection algorithm for the computation of an optimal parabolic or conic spline.
    Originele taal-2English
    Pagina's (van-tot)39-69
    Aantal pagina's31
    TijdschriftMathematics in computer science
    Volume1
    Nummer van het tijdschrift1
    DOI's
    StatusPublished - 2007

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Approximation by Conic Splines'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit