Attractor networks and associative memories with STDP learning in RRAM synapses

Valerio Milo, Daniele Ielmini, Elisabetta Chicca

OnderzoeksoutputAcademic

28 Citaten (Scopus)

Samenvatting

Attractor networks can realistically describe neurophysiological processes while providing useful computational modules for pattern recognition, signal restoration, and feature extraction. To implement attractor networks in small-area integrated circuits, the development of a hybrid technology including CMOS transistors and resistive switching memory (RRAM) is essential. This work presents a summary of recent results toward implementing RRAM-based attractor networks. Based on realistic models of HfO 2 RRAM devices, we design and simulate recurrent networks showing the capability to train, recall and sustain attractors. The results support the feasibility of RRAM-based bio-realistic attractor networks.
Originele taal-2English
Titel2017 IEEE International Electron Devices Meeting (IEDM)
UitgeverijIEEE
Aantal pagina's4
DOI's
StatusPublished - 2017
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Attractor networks and associative memories with STDP learning in RRAM synapses'. Samen vormen ze een unieke vingerafdruk.

Citeer dit