BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

Akinori Hishiya*, Mortada Najem Salman, Serena Carra, Harm H. Kampinga, Shinichi Takayama

*Bijbehorende auteur voor dit werk

    OnderzoeksoutputAcademicpeer review

    56 Citaten (Scopus)
    177 Downloads (Pure)


    A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein aB-crystallin gene ( CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type alpha B-crystallin and the alpha B-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with alpha B-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased alpha B-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by alpha B-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy.

    Originele taal-2English
    Aantal pagina's8
    TijdschriftPLoS ONE
    Nummer van het tijdschrift3
    StatusPublished - 15-mrt-2011

    Citeer dit