Samenvatting
In this report, an overview is given of the research concerning the development of a new type of small-calibre vascular graft: a hydrophilic, microporous, compliant, biodegradable graft is presented, which functions as a temporary scaffold for the regeneration of a new arterial wall (neoartery). The basic healing process, the distinct effects of hydrophilicity, microporosity, compliance and biodegradation, the smooth muscle cell orientation and the effect of cell-seeding on this healing process in these grafts are described and discussed.
It is concluded that vascular grafts, prepared from a material of optimal hydrophilicity, microporosity, compliance and rate of biodegradation, combined with smooth muscle and/or endothelial cell-seeding may provide a rapid development of a neoartery independent of the graft length.
It is concluded that vascular grafts, prepared from a material of optimal hydrophilicity, microporosity, compliance and rate of biodegradation, combined with smooth muscle and/or endothelial cell-seeding may provide a rapid development of a neoartery independent of the graft length.
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 418-422 |
Aantal pagina's | 5 |
Tijdschrift | Biomaterials |
Volume | 8 |
Nummer van het tijdschrift | 6 |
DOI's | |
Status | Published - nov.-1987 |