TY - JOUR
T1 - Beyond ingredients
T2 - Supramolecular structure of lipid droplets in infant formula affects metabolic and brain function in mouse models
AU - Oosting, Annemarie
AU - Harvey, Louise
AU - Ringler, Silvia
AU - van Dijk, Gertjan
AU - Schipper, Lidewij
N1 - Copyright: © 2023 Oosting et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/8/2
Y1 - 2023/8/2
N2 - Human milk beneficially affects infant growth and brain development. The supramolecular structure of lipid globules in human milk i.e., large lipid globules covered by the milk fat globule membrane, is believed to contribute to this effect, in addition to the supply of functional ingredients. Three preclinical (mouse) experiments were performed to study the effects of infant formula mimicking the supramolecular structure of human milk lipid globules on brain and metabolic health outcomes. From postnatal day 16 to 42, mouse offspring were exposed to a diet containing infant formula with large, phospholipid-coated lipid droplets (structure, STR) or infant formula with the same ingredients but lacking the unique structural properties as observed in human milk (ingredient, ING). Subsequently, in Study 1, the fatty acid composition in liver and brain membranes was measured, and expression of hippocampal molecular markers were analyzed. In Study 2 and 3 adult (Western-style diet-induced) body fat accumulation and cognitive function were evaluated. Animals exposed to STR compared to ING showed improved omega-3 fatty acid accumulation in liver and brain, and higher expression of brain myelin-associated glycoprotein. Early exposure to STR reduced fat mass accumulation in adulthood; the effect was more pronounced in animals exposed to a Western-style diet. Additionally, mice exposed to STR demonstrated better memory performance later in life. In conclusion, early life exposure to infant formula containing large, phospholipid-coated lipid droplets, that are closer to the supramolecular structure of lipid globules in human milk, positively affects adult brain and metabolic health outcomes in pre-clinical animal models.
AB - Human milk beneficially affects infant growth and brain development. The supramolecular structure of lipid globules in human milk i.e., large lipid globules covered by the milk fat globule membrane, is believed to contribute to this effect, in addition to the supply of functional ingredients. Three preclinical (mouse) experiments were performed to study the effects of infant formula mimicking the supramolecular structure of human milk lipid globules on brain and metabolic health outcomes. From postnatal day 16 to 42, mouse offspring were exposed to a diet containing infant formula with large, phospholipid-coated lipid droplets (structure, STR) or infant formula with the same ingredients but lacking the unique structural properties as observed in human milk (ingredient, ING). Subsequently, in Study 1, the fatty acid composition in liver and brain membranes was measured, and expression of hippocampal molecular markers were analyzed. In Study 2 and 3 adult (Western-style diet-induced) body fat accumulation and cognitive function were evaluated. Animals exposed to STR compared to ING showed improved omega-3 fatty acid accumulation in liver and brain, and higher expression of brain myelin-associated glycoprotein. Early exposure to STR reduced fat mass accumulation in adulthood; the effect was more pronounced in animals exposed to a Western-style diet. Additionally, mice exposed to STR demonstrated better memory performance later in life. In conclusion, early life exposure to infant formula containing large, phospholipid-coated lipid droplets, that are closer to the supramolecular structure of lipid globules in human milk, positively affects adult brain and metabolic health outcomes in pre-clinical animal models.
KW - Humans
KW - Infant
KW - Animals
KW - Mice
KW - Infant Formula/chemistry
KW - Dietary Fats/pharmacology
KW - Lipid Droplets/metabolism
KW - Glycolipids/chemistry
KW - Phospholipids/metabolism
KW - Diet, Western
KW - Brain/metabolism
U2 - 10.1371/journal.pone.0282816
DO - 10.1371/journal.pone.0282816
M3 - Article
C2 - 37531323
SN - 1932-6203
VL - 18
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e0282816
ER -