Bunched Hypersequent Calculi for Distributive Substructural Logics

Agata Ciabattoni, Revantha Ramanayake

OnderzoeksoutputAcademicpeer review

Samenvatting

We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut-elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large class of logics extending the distributive commutative Full Lambek calculus DFLe and Bunched Implication logic BI. The methodology is then used to formulate new logics equipped with a cutfree calculus in the vicinity of Boolean BI.
Originele taal-2English
TitelLPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning
RedacteurenThomas Eiter, David Sands
UitgeverijEasyChair
Pagina's417-434
Aantal pagina's18
Volume46
DOI's
StatusPublished - 2017
Extern gepubliceerdJa

Publicatie series

NaamEPiC Series in Computing
UitgeverijEasyChair

Citeer dit