Samenvatting
BACKGROUND AND PURPOSE: The relative biological effectiveness (RBE) of proton therapy is predicted to vary with the dose-weighted average linear energy transfer (LETd). However, RBE values may substantially vary for different clinical endpoints. Therefore, the aim of this study was to assess the feasibility of relating mean D⋅LETd parameters to patient toxicity for HNC patients treated with proton therapy.
MATERIALS AND METHODS: The delivered physical dose (D) and the voxel-wise product of D and LETd (D⋅LETd) distributions were calculated for 100 head and neck cancer (HNC) proton therapy patients using our TPS (Raystation v6R). The means and covariance matrix of the accumulated D and D⋅LETd of all relevant organs-at-risk (OARs) were used to simulate 2.500 data sets of different sizes. For each dataset, an attempt was made to add mean D⋅LETd parameters to a multivariable NTCP model based on mean D parameters of the same OAR for xerostomia, tube feeding and dysphagia. The likelihood of creating an NTCP model with statistically significant parameters (i.e. power) was calculated as a function of the simulated sample size for various RBE models.
RESULTS: The sample size required to have a power of at least 80% to show an independent effect of mean D⋅LETd parameters on toxicity is over 15000 patients for all toxicities.
CONCLUSION: For current clinical practice, it is not feasible to directly model NTCP with both mean D and mean D⋅LETd of OARs. These findings should not be interpreted as a contradiction of previous evidence for the relationship between RBE and LETd.
Originele taal-2 | English |
---|---|
Pagina's (van-tot) | 159-165 |
Aantal pagina's | 7 |
Tijdschrift | Radiotherapy and Oncology |
Volume | 165 |
Vroegere onlinedatum | 14-sep.-2021 |
DOI's | |
Status | Published - dec.-2021 |