CAPICE: a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations

OnderzoeksoutputAcademicpeer review

9 Citaten (Scopus)
74 Downloads (Pure)

Samenvatting

Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/capice..

Originele taal-2English
Artikelnummer75
Pagina's (van-tot)75
Aantal pagina's11
TijdschriftGenome medicine
Volume12
Nummer van het tijdschrift1
DOI's
StatusPublished - 24-aug-2020

Citeer dit