Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media

Guowei Li, Yan Sun, Jiancun Rao, Jiquan Wu, Anil Kumar, Qiu Nan Xu, Chenguang Fu, Enke Liu, Graeme R. Blake, Peter Werner, Baiqi Shao, Kai Liu, Stuart Parkin, Xianjie Liu, Mats Fahlman, Sz-Chian Liou, Gudrun Auffermann, Jian Zhang, Claudia Felser, Xinliang Feng

OnderzoeksoutputAcademicpeer review

65 Citaten (Scopus)


The electrolysis processes such as hydrogen evolution reaction (HER) require high efficient catalysts with robust surface stability. A high conductivity is also necessary to speed up the charge transport between the catalyst and the electrolyte. Recently, the observation of exceedingly high conductivity in the topological semimetal MoP, has provided a model catalyst to investigate the correlation between the electrical transport and the electrocatalytic activity for the HER. Thus, MoP is encapsulated in a Mo, P codoped carbon layer (MoP@C). This composite material exhibits outstanding HER performance, with an extremely low overpotential of 49 mV at a current density of 10 mA cm(-2) and a Tafel slope of 54 mV dec(-1) in an alkaline medium. In addition, electron transport analysis indicates that MoP exhibits high conductivity and mobility due to the existence of triple-point fermions and a complex Fermi surface. Furthermore, the presence of P-C and Mo-C bonds at the interface between the carbon layer and the MoP particles modulates the band structure of MoP@C and facilitates fast electron transfer, accumulation, and subsequent delocalization, which are in turn responsible for the excellent HER activity.
Originele taal-2English
Aantal pagina's7
TijdschriftAdvanced Energy Materials
Nummer van het tijdschrift24
StatusPublished - 27-aug-2018

Citeer dit