Charge Transport in High-Mobility Field-Effect Transistors Based on Inkjet Printed Random Networks of Polymer Wrapped Single-Walled Carbon Nanotubes

Francesca Scuratti, Jorge Mario Salazar-Rios, Alessandro Luzio, Sebastian Kowalski, Sybille Allard, Stefan Jung, Ullrich Scherf, Maria Antonietta Loi, Mario Caironi*

*Bijbehorende auteur voor dit werk

OnderzoeksoutputAcademicpeer review

2 Citaten (Scopus)
14 Downloads (Pure)

Samenvatting

Printed random networks of polymer-wrapped multi-chiral semiconducting carbon nanotubes (s-SWCNTs) are an opportunity for mass-manufacturable, high-performance large-area electronics. To meet this goal, a deeper understanding of charge-transport mechanisms in such mixed networks is crucial. Here, charge transport in field-effect transistors based on inkjet-printed s-SWCNTs networks is investigated, obtaining direct evidence for the phases probed by charge in the accumulated channel, which is critical information to rationalize the different transport properties obtained for different printing conditions. In particular, when the fraction of nanotubes with smaller bandgaps is efficiently interconnected, the sparse network provides efficient charge percolation for band-like transport, with a charge mobility as high as 20.2 cm(2) V-1 s(-1). However, when the charges are forced by a less efficient morphology, to populate also higher bandgap nanotubes and and/or the wrapping polymer, thermally activated transport takes place and mobility drops. As a result, a trade-off between network density and charge transport properties is identified for device current optimization, in both p- and n-type regimes. These findings shed light on the fundamental aspects related to charge transport in printed s-SWCNT mixed networks and contribute to devise appropriate strategies for the formulation of inks and processes towards cost-effective mass production schemes of high-performance large-area electronics.

Originele taal-2English
Artikelnummer2006895
Aantal pagina's9
TijdschriftAdvanced Functional Materials
Volume31
Nummer van het tijdschrift5
Vroegere onlinedatum27-okt-2020
DOI's
StatusPublished - jan-2021

Citeer dit