TY - JOUR
T1 - CHD7 promotes glioblastoma cell motility and invasiveness through transcriptional modulation of an invasion signature
AU - Machado, R.A.C.
AU - Schneider, H.
AU - DeOcesano-Pereira, C.
AU - Lichtenstein, F.
AU - Andrade, F.
AU - Fujita, A.
AU - Trombetta-Lima, M.
AU - Weller, M.
AU - Bowman-Colin, C.
AU - Sogayar, M.C.
PY - 2019/3/8
Y1 - 2019/3/8
N2 - Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.
AB - Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85062628172&partnerID=MN8TOARS
U2 - 10.1038/s41598-019-39564-w
DO - 10.1038/s41598-019-39564-w
M3 - Article
SN - 2045-2322
JO - Scientific Reports
JF - Scientific Reports
M1 - 3952
ER -